ON THE ECONOMICS OF RECOMMENDER SYSTEMS

Emilio Calvano Center for Studies in Econ and Finance U. Napoli Federico II

June, 2015

Emilio Calvano

On the Economics of Recommender

JUNE, 2015

- Recommender Systems are software tools and techniques providing suggestions for items to be of use to a consumer.
- Support users in various decision-making processes, such as what items to buy, what music to listen, or what news to read. Recommender systems have proven to be valuable means for online users
- cope with information overload / abundance of choice
- hugely powerful and popular tools in electronic commerce.
- Amazon, Netflix, OK Cupid, Pandora...

Emilio Calvano

On the Economics of Recommender

э

Estimate a utility function that automatically predicts how a user will like an item

Xavier Amatriain (Engineer - director of algorithm engineering at Netflix)

Bssed on

- Past behavior
- Relation to other users
- Item similarity
- Context
- ...

DO THEY ACTUALLY SHAPE CONSUMPTION CHOICES?

Emilio Calvano

On the Economics of Recommender

JUNE, 2015

э

Relevance

What do people (I talk to) say:

- 'Yes totally obvious'
- 'No I don't pay attention / I know what I want'

What do companies say:

- Netflix: 2/3 of the movies watched are recommended (Xavier Amatriain - Engineer Director for the Algorithms Engineering team at Netflix)
- Google news: recommendations generate 38 % more clickthough
- Amazon says 35 % of product sales result from recommendations. -(Matt Marshall, VentureBeat)

What do we know? (empirical / experimental evidence)?

- OK Cupid filtering on 'interactions'
- Facebook filtering on news consumption (Athey and Mobius (2015))

OK CUPID EXPERIMENT (1)

Does the 'match' algorithm work?

- Idea: Switch off the recommendations and see the outcomes.
 - e.g. you tell couples they are 'bad' matches regardless of their 'predicted' compatibility.

OK CUPID EXPERIMENT (2)

Does it shape consumption?

- Idea: Randomize recommendations and see the outcomes.
 - e.g.
 - Idea: take predicted 'bad' matches and tell them they are 'good' matches. compatibility.

Odds of a single message turning into a conversation

WHY SHALL WE CARE? (FROM A PUBLIC POLICY PERSPECTIVE)

Emilio Calvano

On the Economics of Recommender

JUNE, 2015

Fresh means to exhert market power?

- What is an abuse of a dominant position (art. 102)?
- What is "unfair" or works to the "prejudice" of consumers here?
- In the second second
 - Big Data as a barrier to entry.
- Privacy and consumer protection issues
- **O** Promote (ideological) Diversity / Filter bubbles and echo chambers
 - Concern: "Personalized" rec. \rightarrow 'algorithmical segregation'
 - Always Listen to same music, watch similar movies, exposed to same ideology...
 - RecSys 'reinforce' existing taste / don't expose users to new ones
 - In fall 2014 France's Council of State recommended government oversight over the algorithm that Netflix uses to present series and movies, to make sure French and European content is well positioned.
 - Opportunity: 'Serendipitous algos' (i.e. algos delivering pleasant surprises) are rewarded by the market and therefore developed.

JUNE, 2015

Recommendation bias: (a few) insights from theory

Emilio Calvano

On the Economics of Recommender

JUNE, 2015

To fix ideas

- A set of objects (say: movies)
- A Consumer (hereafter C) who can't tell the objects apart
- A Recommender (RS) who
 - has a technology to predict taste.
 - can recommend / not based on prediction.

- Naive intuition suggests that NETFLIX always recommends the 'best' (i.e. CS maximizing) movie.
 - In what follows I speculate about potential potential wedges between RS and C incentives
- Financial Incentives
- Surplus extraction' incentives
- Reputational incentives (Calvano and Jullien (2015))

Well understood: RS may have preferences over what consumers choose:

• kickbacks, commissions, heterogeneous margins, 'own' content House of cards, Amazon branded product, Google shopping

Not so well understood: why are these contractual incentives there?

- Right Conceptual framework: vertical chain.
- RS are often bottleneck suppliers of attention.
- RS are often akin to big <u>downstream</u> retailers.
- Usual Chicago critique calls for ad-hoc foundation of the recommendation bias.

ON NETFLIX AND ITS BUSINESS METRICS

Hugely popular DVD rental company (now mostly streaming).

- 50M subscribers.
- 7B hours/quarter.
- 90 minutes a day (Avg)
- 150 choices (clicks) a day.

Their metrics

- Retention of existing customers (fraction of subscribers who renew subscription)
- Creation of new ones

Their biggest challenge: customer retention.

• 0.1% increase in retention \approx \$50M / year

- Outsource research (Netflix Contest)
- Large scale experimentation with different algos
 - A/B testing with more than 500k users per cell.
- Use customer retention (or other obvious predictors such as #hours watched) to asses the alogs.

What is wrong with that?

ONE (REVEALING) EXPERIMENT...

Source: N. Hunt (2014)

Emilio Calvano

On the Economics of Recommender

JUNE, 2015

ONE (REVEALING) EXPERIMENT...

Source: N. Hunt (2014)

Emilio Calvano

On the Economics of Recommender

June, 2015

ONE (REVEALING) EXPERIMENT...

Source: N. Hunt (2014)

Emilio Calvano

On the Economics of Recommender

JUNE, 2015

Netflix Caters to marginal consumer not average; a.k.a the Spence distortion

Neil Hunt - Chief Product Officer at Netflix -October 2014

All the work we do to make better recommendation [...] is basically testing to see whether this one key person [on the fence between renewing or not the subscription] falls on this side of the fence or the opposite side.

- Algo is biased towards marginal viewer.
- Vivid illustration of the 'Spence' distortion.
- 'Awareness' is not a necessary ingredient: A/B testing with the right metric does the trick.

Consumers cancel their Netflix subscription more often after:

- a stretch of bad movies
- a stretch or good movies
- It doesn't matter

Consumers cancel their Netflix subscription more often after:

- a stretch of bad movies
- 2 a stretch or good movies
- It doesn't matter
 - Recommendations are experience goods
 - Individuals assess (make inference) the value from staying hooked up (i.e. subscribed) to Netflix.
 - Bad movies signal bad news about the 'quality' of the service (that is intentionally vague)

A TOY MODEL OF NETFLIX (BASED ON CALVANO AND JULLIEN (2015))

- One recommender ((N)etflix) and one consumer (C)
- Two periods (say: months).
- One new object (movie) every month.

Every period:

- Netflix chooses to recommend or not the movie.
- C follows advice and then chooses to renew subscription or not.

Netflix Basic goal:

• 'Persuade' C to renew subscription at the end of month 1.

To make the problem interesting...

Assume C renews

INFORMATIONAL STRUCTURE

• Movie is either 🔶, 🚖 🔶, 🚖 🚖 🏠, 🚖

Public information

- (Average) star rating of the other subscribers (prior)
- The opportunity cost of C's time is $\overleftrightarrow{}$

Private information (key)

- Netflix can be one of two types: Clueless
- Oracle observes (almost) actual taste.
- Clueless observes (almost) nothing.
- Common prior.

Consumer problem: Figure out Netlix's 'type' after watching movie, =

On the Economics of Recommender

JUNE, 2015

AMERICAN SNIPER (2015)

January 23, 2015

You've got to be kidding me. This has got to be the least interesting war film I've ever seen.

Image: A matrix of the second seco

< ≣ → < ≣ → JUNE, 2015 2

DUMB AND DUMBER TO (2014)

On the Economics of Recommender

Suppose that C 'naively' believes Netflix is 'honest.'

• N Recommends movie only if its 'best guess' > \Rightarrow

Is honesty the best policy? No

To make problem meaningful: assume C renews **only if** RS is an Oracle. Suppose movie 'very good' (ex-ante): Average rating:

Consumer reasoning

- If N recommends and movie 'sucks' (< ☆☆☆) then N must be clueless → stop subscribing.
- If N recommends and movie 'good' (> ☆☆☆) then N could be either clueless or oracle: stop subscribing.
- $\bullet\,$ if N does not recommend then must be Oracle $\rightarrow\, keep$ on subscribing.

Netflix reasoning: regadless of type: do not recommend.

3 lessons from CJ (2015) (and counting...)

$\bullet \quad \text{The need to} \uparrow \text{retention} \rightarrow \text{strategic rec. bias}$

- distort rec. inefficiently away from the prior
- Over-recommend bad movies
- Under-recommend good movies
- Strategic incentive is self-defeating
 - Only pooling eqm can coexist
 - Not much information gets transmitted.
 - Under-recommend good movies
- There is no obvious market reward for using information in the 'right' way:
 - RS tends to 'conform' to C's expectations (minimize disappointment)
 - $\bullet\,$ competition may increase sensitivity to reputation \rightarrow exacerbate bias.